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ABSTRACT

BGP data collection platforms as currently architected face fun-

damental challenges that threaten their long-term sustainability.

Inspired by recent work, we analyze, prototype, and evaluate a

new optimization paradigm for BGP collection. Our system scales

data collection with two components: analyzing redundancy be-

tween BGP updates and using it to optimize sampling of the incom-

ing streams of BGP data. An appropriate de�nition of redundancy

across updates depends on the analysis objective. Our contributions

include: a survey, measurements, and simulations to demonstrate

the limitations of current systems; a general framework and algo-

rithms to assess and remove redundancy in BGP observations; and

quantitative analysis of the bene�t of our approach in terms of accu-

racy and coverage for several canonical BGP routing analyses such

as hijack detection and topology mapping. Finally, we implement

and deploy a new BGP peering collection system that automates

peering expansion using our redundancy analytics, which provides

a path forward for more thorough evaluation of this approach.
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1 INTRODUCTION

The study of the global Internet infrastructure relies on BGP data

collection platforms (RouteViews [61] and RIPE RIS [49]) that main-

tain BGP peering sessions with network operators who volunteer

to share (sometimes portions of) their routing tables. Originally
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established decades ago to support operational troubleshooting

("How do others reach my network?"), these systems have become

a cornerstone for scienti�c and operational analysis of the Internet.

Collecting this data faces a fundamental cost-bene�t trade-o�.

The information-hiding character of BGP requires collecting routes

from as many BGP routers, a.k.a Vantage Points (VPs), as possible.

But in practice the BGP protocol extensively propagates connectiv-

ity messages, leading to highly redundant (along with signi�cant

unique) data coming from each peer. The result is a data set with

enormous redundancy and yet dangerous visibility gaps [34].

The platforms’ policies to store a snapshot of the aggregated

data every few hours, as well as every BGP update received in

between these snapshots, exacerbates the storage of redundant

data. Continued growth of the Internet (≈ 75k ASes [14] and ≈ 1M

globally announced pre�xes) and increasing connectivity between

networks further burden data collection and use [1, 28]. Users often

resort to sampling the data, e.g., using only a sample of the VPs,

neglecting the connectivity uniquely visible to other VPs. Finally,

the manual vetting of new peers also strains platform scalability.

The platforms collectively peer with only ≈1% of the observably

active ASes on the global Internet. Despite continued addition of

peers, RIS and RV’s coverage in terms of fraction of ASes they are

peering with has remained �at for two decades.

These growing pressures coincide with regulatory concerns

about slow progress in deployment of routing security protections

[62]. The ensuing public debate has highlighted the importance of

these platforms for detecting both accidental and malicious trans-

gressions in the routing system. While signi�cant investment in

data collection could accommodate gathering, retention, and shar-

ing orders of magnitude more routing data, current constraints

motivate us to consider a more strategic approach. We propose a

data collection scheme that scales at least an order of magnitude in

the number of VPs feeding public collection systems while limiting

the increase in human e�ort and data volume.

Vision. We explore a fundamentally new way to collect BGP data:

an overshoot-and-discard strategy. Akin to CERN’s Large Hadron

Collider (LHC) which generates millions of collisions just to see

a few interesting particles (e.g., Higgs boson), overshooting BGP

data collection will maximize the chance to see interesting routing

events, e.g., BGP hijacks.We imagine aworld where public BGP data

providers could automate deployment of additional VPs, targeting

a moonshot of peering with one VP in every of the ≈75K ASes

participating in the global routing system (even half would be a

moonshot!). Overshooting BGP data collection is feasible only if

the system can discard the “less interesting” bits upon acquisition,
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before they consumes processing or storage resources. In the case

of the LHC, fast online algorithms using custom hardware and

software discard 99.994% of the likely less interesting collisions [55].

The epistemological challenge is that discarding BGP updates

inevitably implies loss of information. Even if two VPs observe the

identical (or similar) pre�x announcement, there is a signal in know-

ing which VPs observed it. We construct a framework that allows

some context-dependence in the de�nition of redundancy and ap-

ply it to several important use cases for BGP data. For example, a

BGP hijack may reach many VPs, which redundantly observe it, or

it may reach no available VP (perhaps by intention [34]), in which

case substantial expansion of VP deployment is the best way to

increase the chance of observing it.

Contributions. We make the following contributions.

• We demonstrate with a survey, measurements, and simulations

that the RIS and RV coverage limitations limit e�ective scienti�c

use of the data. (§2-§3).

• We characterize redundancy in BGP data, design algorithms that

identify redundant updates and VPs for �exible redundancy de�-

nitions, and implement GILL, a BGP data collection system that

uses an overshoot-and-discard collection scheme (§4-§5-§6-§7).

• We deployed GILL at https://bgproutes.io and publish all its data.

Operators can automatically connect their BGP routers to GILL

to contribute BGP data (§8-§9).

• We show that GILL’s sampling algorithms outperform the status

quo for �ve relevant use cases (§10).

Long-term impact (§11). GILL’s approach o�ers a long-term path

toward sustainable scaling of BGP data collection. We show that a

redundancy-aware system consistently improves the accuracy and

coverage of studies and tools that rely on BGP data. Our simulations

of a scenario where 50% (vs. 2%) of ASes peered with GILL tripled

the number of peer-to-peer links observed, doubled the number

of Internet failures that we could localize, and reduced by 33% the

proportion of undetected forged-origin hijacks without processing

more data than what RIS and RV do today.

Immediate bene�ts (§12). Regardless of the future of the GILL

platform, its sampling algorithms can help users cope with the mas-

sive stream of data that RIS and RV generate. We replicated analyses

in three studies/tools, in all cases GILL improved the accuracy and

coverage while processing the same data volume: we inferred more

AS relationships (+16%), identi�ed and corrected errors in CAIDA’s

ASrank dataset, and inferred more forged-origin hijacks (+23%)

with ≈4× fewer incorrect inferences (i.e., false positives).

2 BACKGROUND

Routing Information Service (RIS) [49] and RouteViews (RV) [61]

are two widely-used platforms that peer with hundreds of routers

(also called peers, or VPs) and collect the BGP updates exported

by those VPs. As of May 2023, 32% of the RIS and RV VPs [37, 52]

are full feeders, i.e., they send updates for roughly all announced IP

pre�xes on the Internet (≈944k IPv4 and ≈205k IPv6 pre�xes [14]).

A stored BGP update carries four relevant attributes [40]: (i) the

timestamp at which the update was received, (ii) the IP (v4 or v6)

pre�x that the update announces, (iii) the AS path used to reach

that pre�x, and (iv) a set of BGP communities, which carry informa-

tion or requests for special handling of the announcement. Among

other uses, researchers leverage the timestamp to �nd transient

paths [30], the pre�x to detect hijacks [56], the AS paths to infer

AS relationships [31], and the communities to understand complex

routing behavior [29, 60].

The path-vector nature of BGP challenges macroscopic data

collection e�orts, because each router only announces updates for

its best route to each destination, limiting the visibility of backup

links. Con�dential routing policies also limit the propagation of

updates and thus visibility of links. Thus, each VP (even full feeders)

provides a partial view over Internet routing. We illustrate in Fig. 1

the inherent limitation in mapping AS topology by combining

partial views. Assume that every AS runs a single BGP router,

announces its only pre�x into BGP, and con�gures routing policies

following the Gao-Rexford model [23]. Straight lines are customer-

to-provider (c2p) links and dashed lines are peer-to-peer (p2p) links.

Logically, VPs at the core help to observe c2p links whereas the ones

at the edge help to observe p2p links (as they are not announced to

providers [23]). With the local view of 1 , one can infer all AS links

but the two peering links 3 4 and 5 6 (Fig. 1a), whereas

with the local view of 5 , one can infer all AS links but the two

customer-to-provider links 2 4 , 4 6 (Fig. 1b). Local views

can be redundant, e.g., combining local views of 1 and 2 does

not reveal more links (Fig. 1c).

To expand coverage, RIS and RV continually add newVPs; by Dec

2023, RIS had 1537 VPs in 816 distinct ASes and RV had 1130 VPs in

337 distinct ASes (Fig. 2, top). But the total number of active ASes on

the Internet grows faster than the platforms’ peering expansion, so

the net coverage, i.e., the proportion of ASes that host at least one VP,

is stable (Fig. 2, bottom). Users can download a snapshot of all BGP

updates held by a VP at a particular time also called a routing table or

RIB (Routing Information Base). Alternatively, users may download

every update observed by the VPs over time (e.g., using [40]), which

currently results in ≈28K updates per hour (average in Dec. 2023)

for a single VP (Fig. 3a), and billions of updates per day for all RIS

and RV VPs (Fig. 3b).

3 INCREASING COVERAGE

We use three case studies—AS topology mapping, locating outages,

and BGP hijack detection—to demonstrate how expanding these

platforms to support more VPs would improve the accuracy and

coverage of scienti�c and operational analyses of Internet infras-

tructure (§3.1). We explain the challenges of such expansion for

data providers and users (§3.2).

3.1 Limitations of low VP coverage

A tiny fraction (1.1%) of the 74k ASes participating in the global

routing system [14] host a VP. If we consider only the 11832 transit

ASes (i.e., those with at least one customer), this fraction is higher

but still only 5.9%. While we cannot know how much additional

information we might observe from VPs that do not peer with the

public collection platforms, we estimate this gap using controlled

simulations. We use C-BGP [47] to simulate "mini" Internets where

each AS runs one BGP router and announces one or more pre�xes.

https://bgproutes.io
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Figure 1: Combining local views can

help to map the AS topology. Gray

links are not visible from routes col-

lected by VPs ( ).
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Figure 2: Growth in VPs.
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Figure 3: Growth in updates collected by RIS and RV

combined.

We ensure that the number of pre�xes announced by the ASes

follows the distribution observed in the real Internet. We then

collect routes from a subset of ASes selected randomly and measure

how well they enable achieving various objectives.

Used AS topologies. We run our simulations on eleven ASes

topologies generated using two techniques.

Pruned known AS topology:We infer the AS topology fromCAIDA’s

AS relationship dataset from October 2023 [19] and prune it (to

reduce the computational/hardware cost of the simulations) by

iteratively removing leaf nodes until the topology has 6k ASes

(or 1k depending on the objective). While we cannot scale our

simulations to the size of the real Internet, we note that they are

larger than simulations conducted in previous studies [26, 35, 36].

Arti�cial topologies: We built ten AS topologies whose statistical

parameters match those of the known AS topology using the Hyper-

bolic Graph Generator [3]. We set the average node degree to 6.1,

which results in a comparable degree of connectivity (a.k.a. Beta

index) to the one observed in CAIDA’s AS relationship dataset [19],

and use as the degree distribution a power lawwith exponent 2.1 (as

in [3]). We assign AS relationships as follows. The three ASes with

the highest degree are Tier1s and fully meshed. ASes connected to

a Tier1 are Tier2s. ASes connected to a Tier2 but not to a Tier1 are

Tier3s, etc. Two connected ASes have a p2p relationship if they are

on the same level, and a c2p relationship if not. Routing policies

follow the Gao-Rexford model [23].

Studied objectives. We use these topologies to estimate the im-

pairment in our ability to perform three canonical inferences: AS

topologymapping, link failure localization, and forged-origin hijack

detection.

AS topology mapping: We measure the proportion of p2p and c2p

links observed in at least one collected AS path. We consider p2p

links separately since routing policies typically reduce their propa-

gation and thus observability [23].

Link failure localization: We simulate 1k random link failures and

measure how many p2p and c2p links we can locate using the

algorithm described in [21]. Here, we use a topology with 1k ASes

(instead of 6k for the other objectives) as this analysis is more

computationally expensive.

Forged-origin hijack detection: In these hijacks, the attacker prepends

the valid origin in the AS path [25]. Type-X hijacks are forged-

origin hijacks where - ≥ 1 is the position of the attacker’s AS in

the forged AS path. We simulate a Type-1 and a Type-2 hijack for

every possible victim and measure how many we detect from the

collected routes. Attackers are randomly picked and hijack one of

their victim’s pre�xes.

Observations. Fig. 4 shows the percentage of observed AS links

(bottom), localized failures (middle), and detected forged-origin

hijacks (top) as a function of the number of ASes hosting a VP

(coverage). The results of the simulations with the pruned known

AS topology are indicated with a star whereas the results from

the ten arti�cial topologies are shown in boxes. We make two key

observations.

Key observation #1: The simulations e�ectively illustrate the

opportunity cost of having only a 1% coverage of VPs, i.e., the

coverage of RIS and RV combined.

AS topology mapping: With so few VPs, simulations observed only

16% (resp. 12%) of the p2p links (median) when using the arti�cial

topologies (resp. pruned known AS topology).

Failure localization: Only 10% (median of the ten simulations) of

the failures on p2p links can be localized. With the pruned known

AS topology, even c2p link failures are di�cult to localize: with 1%

coverage, we locate only ≈40% of them.

Hijack detection: With a 1% coverage, we fail to detect 24% (median)

of Type-1 hijacks, i.e., they are not visible from any VP when using

arti�cial topologies (16% when using the known pruned topology).

Type-2 hijacks are even less visible (32%with a 1% coverage) because

the hijacked routes have a longer AS path. The implication is that

forged-origin hijack detection systems [25, 56] miss a signi�cant

fraction of hijacks, even if using all RIS and RV VPs. Given the

prevalent use of these platforms for hijack detection, their lack of

coverage leaves open signi�cant attack surface [34].

Key observation #2: Our simulations suggest that the percentage of

ASes hosting a VP should grow by 25-100× to achieve the three

objectives reasonably well. With 50% of ASes hosting a VP (i.e., a

50× coverage increase), 90% of p2p links are mapped, 95% of failures

on p2p links can be localized, and only 4% of Type-1 hijacks remain

undetected (median values with arti�cial topologies).

Con�rmation with real (but private) data. We contacted a

private BGP data provider (bgp.tools [17]) that collects BGP routes

from ≈1000 routers and compared the set of AS links observed

from these private feeds against the set observed by RIS and RV

VPs (in September 2023). We found that bgp.tools saw 192k AS

links that none of the RIS and RV VPs observed, and conversely,

RIS and RV VPs observed 401k links that bgp.tools did not observe.

Other private data collection systems, e.g., that companies support,

have reported visibility not seen in the public systems [12]. These
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Figure 4: Our simulations show that the current RIS and RV

coverage (1.1%, the red area) induces a signi�cant impairment

to important operational analyses. We suggest a 25-100×

higher coverage (green area).

signi�cant di�erences in visibility across VPs provide compelling

motivation to architect data collection systems that can easily sup-

port many more VPs.

3.2 Scaling challenges in data collection

Putting aside the non-technical challenges of a radical expansion

in the number of peers, we focus �rst on the technical challenges,

for both data providers and users.

Challenges for data providers Cultivating more VPs generates

more data as each of them exports BGP updates. Moreover, new

IP pre�xes advertised in BGP [14] contribute to the increase in

the volume of data collected by every VP. The compound e�ect—

more VPs (Fig. 2, top) and more updates per VP (Fig. 3a)—yields

a quadratic increase in updates reaching the collection platforms

(visible in Fig. 3b). RIPE RIS has expressed concerns about this

unsustainable growth rate [1] and its implications for long-term

data management [28]. Recently, RIPE removed the peering form

(that network operators used to submit peering requests) from their

website, to limit data processing and storage costs. Instead they

adopted a selective peering policy, targeting peers in countries with

the largest inferred visibility gaps.

Challenges for users (survey-based). Although several tools can

speed up data processing [5, 6, 40], many measurement studies and

monitoring tools use only a sample of data collected by RIS and

RV, either using only a subset of the VPs, a short time window, or

both. While authors of these studies do not typically explain why

they sample, their choice suggests they believe the data volume is

not worth trying to manage. We con�rm this explanation with a

survey we conducted on authors of 11 research papers. We do not

cite these papers to preserve the anonymity of the respondents.

More precisely, we selected 11 BGP-based papers from top con-

ferences, namely SIGCOMM, NSDI, S&P, USENIX Security, NDSS

and IMC. We focused on studies published fewer than ten years ago

that collectively covered a wide range of BGP-related questions.

We purposely did not select any of the studies used to benchmark

and evaluate GILL’s algorithm (§10-§11-§12). We classi�ed these

11 studies into two categories based on how they sampled the BGP

data. Nine papers used all routes collected from a subset of the VPs

(which we call category �1); six papers used a limited durations

(�2). Note that a paper may be in both categories. For each paper,

we asked authors whether BGP data volume limited their work,

how and why they sampled BGP data sources, their understanding

of the impact of the sampling on the quality of their results, and if

they would expand their sample given more resources or time. We

did not receive answers from the authors of three papers. Thus, we

have seven respondents in �1 and �ve in �2. We summarize our

�ndings here; details of the survey are in an appendix (§16).

Key observation #1: The volume of BGP data to process is often a

limiting factor. In fact, seven (of eight) respondents found the BGP

data expensive to process. For three respondents in �1, process-

ing time motivated them to use only a subset of the VPs; three

respondents in�2 considered the processing time when choosing a

measurement interval. Even a respondent who used a Spark cluster

found it inhibitively time-consuming to process the BGP data.

Key observation #2: Users often sacri�ce quality of the results to fa-

cilitate data processing. In fact, six respondents in�1 acknowledged

that using more VPs would improve the quality of their analysis.

The last respondent was not sure, given the potential redundancy in

the data sources (which he did not analyze). Two of the six believed

it would not signi�cantly change the conclusion of their studies

(e.g., one said that it could help to pinpoint corner cases). However,

six of the seven authors in �1 a�rmed that they would have used

more VPs if they had more resources and time. Similarly, all �ve

respondents in �2 said that extending the duration of their study

would improve the quality of their results. One respondent thought

the gain would not be signi�cant; another said it could help detect

rare routing events. All respondents in �2 would have extended

the duration of their observation window given more time and

resources. The uncomfortable truth is that we do not know exactly

what they are missing, which is why we used simulations (§3.1)

and experiments (§12) to corroborate that important analyses lose

accuracy and/or coverage when using heavily sampled topologies.

4 REDUNDANCY IN BGP DATA

We show, both intuitively (§4.1) and experimentally (§4.2), that

redundancy in BGP data makes it a good candidate for collection

with an overshoot-and-discard strategy.

4.1 Motivating example

Consider the scenario in Fig. 5 that shows seven ASes (1-7) inter-

connected in c2p (arrows) and p2p (lines) relationships, according to
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Figure 5: A scenario showing the value of an overshoot-and-

discard approach when collecting BGP data.

the Gao-Rexford model [23].AS4 originates two pre�xes p1 and p2

whereas AS6 originates one pre�x, p3 . Four VPs (1-4) export their

routes to a data provider like RIS or RV. We consider two isolated

events: (1) an Internet link failure impacting the peering session

between AS2 and AS4, and (2) a hijack where AS7 illegitimately

announces p3 , the pre�x owned by AS6. We consider only the

updates induced by these two events.

Strong data redundancy at di�erent granularities. Assume a

deployment of only two VPs: VP1 , VP2 . In this case, four updates

are collected (Fig. 5a), induced by the link failure causing a path

change via 1 (the hijack is not visible from these VPs). We ob-

serve data redundancy at two levels of granularity: among collected

updates and between VPs.

Redundancy between updates: Updates for p1 and p2 are redun-

dant, induced by the same event (the link failure) and with similar

attribute values (time and AS path).

Redundancy between VPs: VP1 and VP2 are redundant: They pro-

vide a very similar view over routing updates. For instance, they

both receive an update for p1 and p2 at roughly the same time

and with a similar AS path.

4.2 Exploring redundancy in the BGP data

We now provide a comprehensive analysis of redundancy in the

BGP data. As there is no consensus on how to de�ne redundant BGP

updates, we de�ne three gradually stricter de�nitions of redundancy

between updates.

We denote D (E, C, ?, !, !F ,�,�F) a BGP update observed by VP E

at time C for pre�x ? . ! is the set of AS links in the AS path whereas

!F is the set of AS links in the AS path implicitly withdrawn by

this update, i.e., that were in the previous update for pre�x ? and

are rendered obsolete by the new update. Similarly, � is the set of

community values and�F is the set of community values implicitly

withdrawn for pre�x ? . Observe that !F = �F = ∅ if there was no

Definition 1
(Cond. 1)

Definition 2
(Cond. 1 and 2)

Definition 3
(Cond. 1, 2 and 3)

0%

50%

Low

redundancy

High
redundancy

90%

100%

Figure 6: Redundancy among 100 random RIS and RV VPs

for three gradually stricter redundancy de�nitions.

previous update for ? observed by E . Consider two BGP updates

D1 (E1, C1, ?1, !1, !1F ,�1,�1F) and D2 (E2, C2, ?2, !2, !2F ,�2,�2F).

We de�ne the following three conditions to support our redundancy

de�nitions:

• Condition 1: |C1 − C2 |< 100s, and ?1 = ?2
• Condition 2: !1 \ !1F ⊂ !2 \ !2F
• Condition 3: �1 \�1F ⊂ �2 \�2F

Condition 1 uses a 100-seconds slack when comparing timestamps

to accommodate typical BGP convergence time [30]. Condition 2

checks whether the set of new links in the AS path observed by

VP E1 is included in the set of new links in the AS path observed

by VP E2. Condition 3 follows the same approach but for com-

munity values. Observe that conditions 2 and 3 are asymmetric

(- ⊂ . ≠⇒ . ⊂ - ). We formalize our three gradually stricter

redundancy de�nitions:

• Definition 1 (pre�x based):

D1 is redundant with D2 if condition 1 is true

• Definition 2 (pre�x and AS-path based):

D1 is redundant with D2 if conditions 1 and 2 are true

• Definition 3 (pre�x, AS-path and community based):

D1 is redundant with D2 if conditions 1, 2 and 3 are true

The vast majority of the collected updates are redundant with

another collected update. Among the updates collected by RIS

and RV during one hour in Sept. 1st 2023, we �nd that 97% are

redundant with at least another update according to Def. 1. This

number remains high with stricter redundancy de�nitions (77%

with Def. 2 and 70% with Def. 3).

A signi�cant portion of the VPs are redundant with another

VP. We use our redundancy de�nitions to quantify redundancy

between RIS and RV VPs. We de�ne +%1 as redundant with +%2
if >90% of the updates from +%1 are redundant (based on one of

the three de�nitions) with at least one update from +%2. Fig. 6

shows the redundancy, for each of the three de�nitions, between

100 VPs randomly selected and computed using one hour of data on

Sept. 1st, 2023. We focus on 100 VPs to reduce the computational

resources needed to perform the experiment. However, we mitigate

possible biases induced by this sampling (see §3) by performing 30

random selections with di�erent seeds and showing the results for

the selection that returns the median number of redundant pairs of

VPs. With Def.1, 70% of the VPs are redundant with at least another

VP. Logically, this number decreases with stricter de�nitions but

remains signi�cant: With Def. 2, 26% of the VPs are redundant with

another, and 22% with Def. 3. We observe similar redundancy when

considering only full feeders.
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5 GILL’S KEY PRINCIPLES

We present GILL, a system that scales to as many ASes as wish to

peer with it, to increase coverage while keeping data collection and

processing manageable. We explain GILL’s two key principles: an

overshoot-and-discard collection scheme and support for a �exible

de�nition of redundant.

Overshoot-and-discard data collection strategy. GILL collects

data using an overshoot-and-discard approach. "Overshoot" means

that GILL can peer with tens of thousands of VPs (25-100× more

than RIS and RV) while "discard" means that the redundant bits of

the data are discarded right away to facilitate storage and processing.

We illustrate this strategy using the scenario in Fig. 5. Assume the

following three �lters are applied to receive updates from four VPs:
from VP1 drop updates for prefixes p1 , p2 ;

from VP2 drop updates for prefix p1 ;

from VP4 drop updates for prefix p1 , p2 ;

Note that the second �lter (for VP2 ) is not in Fig. 5, as a �lter

explained in the next paragraph (ingredient #2) overrides it. These

�lters retain three updates:
VP2 receives update for p2 with AS path 6 2 1 4 ;

VP3 receives update for p3 with AS path 4 1 2 6 ;

VP4 receives update for p3 with AS path 5 7 ;

These three updates provide richer information than the original

four updates enabling more complete inferences. In fact, the update

received by VP2 enables detection that one direction of link 2 4

is not used, and the update received by VP3 enables detection

that the other direction is not used. Moreover, VP4 is close to the

hijacker and observes the hijacked route, which is preferred over the

legitimate ones in this region of the topology. Once collected, this

hijacked route enables monitoring systems to detect the hijack and

report it to the victim. This scenario demonstrates the possibility

of gathering more insight from less but intelligently �ltered BGP

data, using more VPs.

We intentionally placed additional VPs ( VP3 and VP4 ) and op-

timized �lters to detect the two routing events and discard updates

with similar attribute values. For example, the four updates that

VP1 and VP2 observe for p1 and p2 have a similar AS path;

GILL retains only one of these updates. In practice, deciding which

updates to discard and building �lters is challenging. There is no

ground truth about which routing events will appear where, how

they will propagate, and what users want to do with the data.

Sampling algorithms that maximize fairness. Our design ob-

jective is a general framework that is bene�cial regardless of what

users do with the data. However, discarding data inevitably a�ects

some studies more than others. Maximizing fairness is challeng-

ing, especially given the diverse objectives that operators and re-

searchers may have. GILL relies on a new sampling scheme that

uses two key ingredients to maximize fairness.

Ingredient #1: Support for a �exible definition of redundant. While

the three redundancy de�nitions in §4 enable us to illustrate redun-

dancy across BGP updates and VPs, optimizing our algorithms to

minimize redundancy according to a de�nition leads to over�tting.

We explore this risk of over�tting by developing three speci�c BGP

data sampling strategies, each optimized to minimize redundancy in

the set of updates collected by a sample of VPs according to one of the

de�nitions in §4. These three speci�c sampling strategies greedily

select the VP that minimizes the proportion of collected redundant

updates. Logically, a speci�c sampling strategy returns less redun-

dant VPs compared to selecting them randomly (as in Fig. 6) when

redundancy is evaluated according to the de�nition it is optimized

for. For instance, when we use the speci�c sampling strategy that

uses the loose redundancy Def. 1 to sample 100 RIS and RV VPs,

only 37 VPs have >50% of their updates that are redundant with

the ones observed by another VP. This number drops to 20 with

Def. 2 and 15 with Def. 3. However, we benchmarked these speci�c

sampling strategies on various use cases (e.g., hijack detection) and

found that they perform poorly (§10).

Thus, we designed GILL’s sampling algorithm to not optimize for

a given objective. Instead, GILL �nds correlations across past BGP

updates and uses a metric called reconstitution power to identify

updates to discard because they can be inferred from other updates.

GILL retains the latter updates.

Ingredient #2: Keep all updates from a few valuable VPs. Some studies

require data for all pre�xes (even if redundant), which is the case

when one wants to identify the origin AS of every pre�x. Ingredient

#1 does not ensure visibility over all pre�xes as the �lters above

discard all updates for p1 . Thus, GILL retains all updates from VP2

by applying the �lters depicted in Fig. 5b. Now, GILL collects four

updates, the same number as in the current approach with only

two VPs but no �lters (Fig. 5a). But these four updates allow all

three objectives—detecting the failure on 2 4 , the hijack on p3 ,

and identifying the origin AS of every pre�x.

In practice, it is challenging to �nd from which VPs GILL should

retain all updates as there is no ground truth. Selecting them ran-

domly is an obvious option that performs poorly as GILL would

retain all updates from many redundant VPs (Fig. 6) and discard

updates from more valuable VPs. Thus, GILL uses algorithms that

quantify redundancy between every pair of VPs and select a set of

VPs that minimizes overall redundancy among the collected routes

(§6). GILL keeps the full RIBs and all updates from these valuable

(or anchor) VPs and �lters updates received from other VPs.

6 GILL’S SAMPLING ALGORITHMS

We overview the two sampling algorithms that GILL uses to �nd

redundant updates and anchor VPs, respectively. For reproducibil-

ity, we provide formalization, examples, and describe parameter

calibration in §17-§18.

Component #1: Finding redundant BGP updates. GILL com-

putes redundancy between past collected updates using the follow-

ing three-steps algorithm.

Step 1 (§17.1): GILL takes a past set of updates V collected during

a two-day period and groups updates that appear together in a

short time window of 100s into correlation groups. These correlation

groups capture groups of correlated updates, i.e., that often appear

together. GILL builds correlation groups on a per-pre�x basis, i.e.,

two updates with di�erent pre�xes cannot be in the same correlation

group. In Fig. 5, the two updates for p1 collected by VP1 and VP2

are in the same correlation group whereas the two updates for p2

are in another correlation group.GILL then weights every correlation

group based on how many times its updates appear together during

the time window where the set of updates V was collected.
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Step 2 (§17.2): GILL identi�es redundant updates individually for

every pre�x using a metric called the reconstitution power.

Reconstitution power intuition: If we can identically reconstitute

the set of updates V from one of its subsets U , then U contains

useful updates and V \ U contains redundant updates. Two iden-

tical updates come from the same VP and have the same pre�x,

AS path, community values, and timestamp1. GILL’s updates re-

constitution algorithm works as follows: for every update D in U ,

GILL reconstitutes all the updates in the correlation group with the

highest weight among the ones that include D. The reconstitution

power is the percentage of updates in V that GILL can identically

reconstitute.

For each pre�x, GILL builds the set U of nonredundant updates

by iteratively adding to U the set of all updates collected by the

same VP and that most improves the reconstitution power. Observe

that GILL adds to U either all updates collected by a VP, or none

of them, as the �lters that GILL builds match on the pre�x and the

VP only and cannot discriminate updates based on their AS path or

community values (§7). GILL stops adding new updates to U when it

can reconstitute 94% of the updates in V , which we experimentally

�nd to be the best tradeo� between volume of data retained and

loss of nonredundant information. With RIS and RV data, GILL

stops when |U |/|V | ≈ 0.16, i.e., GILL can reconstitute 94% of a set of

updates from only ≈16% of them. GILL classi�es updates in U (16%)

as nonredundant and the ones in V \ U (84%) as redundant.

Step 3 (§17.3): Finally, GILL exploits redundancy across pre�xes as

we �nd that two pre�xes can be subject to similar and simultaneous

route updates (e.g., when these two pre�xes are announced by the

same AS, which is the case for p1 and p2 in Fig. 5). If di�erent

pre�xes are subject to the same updates that GILL classi�ed as

nonredundant in Step 2, then GILL classi�es the updates for one

of these pre�xes as nonredundant and the others as redundant.

Now, GILL classi�es 93% of the RIS and RV updates as redundant

(|U |/|V | ≈ 0.07).

Component #2: Finding anchor (i.e., valuable) VPs. GILL iden-

ti�es anchor VPs (from which it retains all updates) by computing

redundancy between combinations of updates collected by each

VP, i.e., it quanti�es how similar the views of the VPs are, using the

following four steps.

Step 1 (§18.1): GILL selects a large, unbiased set of BGP events to

gauge pairwise redundancy between VPs. First, GILL carefully se-

lects three types of non-global events (path changes, outages, and

origin changes). GILL avoids global events since all VPs tend to see

them, rendering them less discriminating. Second, GILL strati�es

its sample of events across space and time to avoid bias.

Step 2 (§18.2):GILL characterizes howVPs experience selected events.

That is, for every BGP event, GILL computes the di�erence induced

by the event on the topological features [58] of the ASes involved,

as observed by each VP. These features embed information about

the four attributes of a BGP update: time, pre�x, AS path, and

community values.

Step 3 (§18.3): GILL computes pairwise redundancy scores between

VPs. That is, for every event, GILL computes the pairwise Euclidean

distance in a =-dimensional space, where = is the number of topo-

logical features. VP pairs with similar feature values for an event are

1We use a 100s slack when comparing timestamps.
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runs of GILL.

close in this space and thus likely redundant. GILL then computes

the average Euclidean distance between each pair of VPs over all

the selected events.

Step 4 (§18.4): GILL selects a set of anchor VPs, considering each

VP’s data redundancy and its volume. GILL considers the volume

of data generated by every VP to prioritize the one that provides

richer information within a few updates. GILL �rst selects the VP

with the lowest average Euclidean distance to all other VPs, then

greedily adds the VP that balances maximal Euclidean distance to

already selected VPs and minimal additional data volume that the

VP brings. GILL stops selecting new VPs when each remaining VP

has the highest possible redundancy score with one selected VP.

Intuitively, the higher the VP coverage, the lower the proportion of

selected anchor VPs. With RIS and RV, GILL �nds 178 anchor VPs.

7 GILL’S FILTER GENERATION

Once GILL identi�es redundant BGP updates, it computes �lters to

apply to its peering sessions.

Filtering policy. GILL builds �lters that aim to discard redun-

dant BGP updates that do not come from an anchor VP, and retain

all others. We infer from experimental analyses the frequency at

which GILL must refresh its �lters. Fig. 5b gives an example of

the �lters generated by GILL. The �rst �lter accepts all updates

from anchor VP2 . The subsequent (lower priority) �lters discard

redundant updates from other VPs. GILL employs an “accept ev-

erything” default �ltering policy. Thus, GILL always retains new

updates (i.e., not seen before), which ensures retention of updates

from newly deployed VPs. GILL might discard new updates only

when it relaunches its sampling algorithms and refreshes its �lters

(see next paragraph).

Keeping �lters accurate over time. GILL needs an up-to-date

list of redundant updates, otherwise an increasing number of new

redundant updates match none of the �lters over time and thus

GILL retains them (due to the "accept everything" default policy).

We infer the frequency at which GILL must refresh its �lters (i.e.,

execute components #1 and #2 in §6) from experimental analyses.

GILL executes component #1 every 16 days. We evaluate how accu-

rate GILL’s redundant update inferences remain over time. More

precisely, we build GILL’s �lters using data from Sept. 1, 2023, and

measure their ability to discard redundant updates in a set of up-

dates collected 3 days after the �lter generation, with 3 ranging

from 1 to 128 days. Fig. 7 shows the percentage of updates matched
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Figure 9: GILL’s work�ow. All blue items are publicly avail-

able at https://bgproutes.io (§9).

by the �lters (thus discarded by GILL). Logically, the higher the

value of 3 , the lower the percentage of matched updates, as the

proportion of new updates (i.e., never observed before) in a set of

updates increases when 3 increases. We con�gure GILL to execute

component #1 in §6 every 16 days, as it appears to be the threshold

after which the percentage of matched updates critically drops.

GILL executes component #2 every year. To estimate how oftenGILL

should refresh its list of anchor VPs, we compute the redundancy

score for every pair of VPs on Sept. 2023 and compare them with

redundancy scores computed< months before. Fig. 8 shows the

distribution of the redundancy score di�erences for di�erent values

of<, ranging from six to 66 (=5.5 years). Logically, the higher the

value of<, the higher the redundancy score di�erences. However,

when< ≤ 12, the redundancy score di�erences are low (the di�er-

ence is below 0.1 in the median case), and we �nd that redundancy

scores change by less than 5%. We thus con�gure GILL to execute

component #2 in §6 one time per year.

Observe that GILL’s operators can temporarily overwrite these de-

fault settings to accommodate bursts of new peering sessions, e.g.,

when the platform bootstraps.

Discarding future redundant updates. One challenge when

generating �lters is that GILL identi�es past redundant updates

whereas �lters aim to discard future redundant updates, which

are impossible to predict. Filters that match on all attributes (i.e.,

pre�x, AS path, community values) and the sending VP would be

too �ne-grained and result in continuous retention of new updates.

In Fig. 5, new updates induced by the failure have an AS path likely

never observed before. Fine-grained �lters that match on the AS

path would retain all these updates, increasing the volume and

redundancy of data collected.

However, updates classi�ed as redundant byGILL in §6 at time C1

are often similar to updates classi�ed as redundant at time C2 (C1 <

C2). GILL thus generates coarse-grained �lters that match only on

the VP fromwhich it receives an update and its pre�x (Fig. 5b). Such

a �lter thus matches on an entire space of similar (and redundant)

updates—which are either all retained or all discarded. We con�rm

the validity of this approach by developing two modi�ed versions

of GILL that build �ner-grained �lters. The �rst version (GILL -

asp) builds �lters that match on the pre�x, VP, and AS path. The

second version (GILL -asp-comm) builds �lters that also match on

Number of peers 100 1000 10000

With �lters (i.e., GILL)

Update load

(per hour)

Average (28K upd/h) 0% 0% 0%

99th percentile (241K upd/h) 0% 0% high

Without �lters

Update load

(per hour)

Average (28K upd/h) 0% 0% 39%

99th percentile (241K upd/h) 0% 32% high

Table 1: Proportion of updates lost by our BGP daemons as

a function of the update frequency when using only one

CPU. A green cell means daemons cope with the update

frequency (no updates are lost) whereas a red cell means

daemons drop at least one update. When the number of

lost updates cannot be precisely computed because the

load is too high, we just label it as high and color it in red.

community values. We then use a typical training-testing pipeline

to evaluate the proportion of future redundant updates that the

generated �lters discard. More precisely, we consider the set of

redundant updates A (= V \ U) inferred by GILL, which we divide

into two distinct sets A1 and A2 that are consecutive in time (i.e.,

updates in A2 appear after the ones in A1). We then generate �lters

with the three versions of GILL that match on the updates in A1

and measure the proportion of updates in A2 that match the �lters.

We �nd that GILL’s �lters match 87% of the updates in A2 against

only 43% for GILL -asp and 0% for GILL -asp-comm.

Observe that GILL generates �lters that match on updates in-

ferred as redundant by its sampling algorithms, which we purposely

designed to align with the coarse-grained granularity of �lters:

They classify either all or no updates for a given pre�x and VP as

redundant (§6). Thus, �lters cannot match an update inferred as

nonredundant by GILL.

8 SOFTWARE

Fig. 9 describes the overall work�ow of GILL, which relies on the

following two software components:

A custom BGP daemon, written in C and tailored to peer with a

single BGP router, apply �lters on received updates, and store (either

RIBs every eight hours or every update) updates not matched by the

�lters. We evaluate the ability of our BGP daemon to cope with high

data volume by running multiple instances of it simultaneously

on a single 3.20 GHz Apple M1 Pro CPU with 16GB of RAM. For

every BGP daemon that we run, we con�gure a fake peer that

establishes a BGP session with the daemon and sends a stream of

BGP updates. Table 1 shows the percentage of BGP updates lost

by the BGP daemons as a function of the BGP update frequency

and depending on whether they apply �lters generated by GILL

(top part) or not (bottom part). We con�gure our fake peers to send

BGP updates at a frequency that is either the average (28k/hour) or

the 99th percentile (241k/hour) of the frequency at which RIS and

RV peers send updates.

We �nd that a single CPU successfully handles (i.e., losing no

updates) up to 10k BGP daemons with the average update frequency

https://bgproutes.io
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and up to 1k daemons with the high update frequency (99th per-

centile) when using �lters. Thus, we expect GILL to support tens

of thousands of BGP sessions (even during peak times) on a server

with many CPUs. Logically, we observe that our BGP daemons can

process more updates when using �lters because less data is written

to disk, which is the most time-consuming task of our daemon.

Observe that GILL could implement �lters using route-maps as

suggested in [4]. However, we �nd that a server with 24 CPUs

and 64GB of RAM running FRR [45] (a typical software router that

current collection platforms use to peer with VPs) can only handle

up to ≈ 10 route-maps, far fewer than what GILL generates (≈1M).

An orchestrator, written in Python, starts new BGP sessions us-

ing our daemon, periodically executes components #1 and #2 of

GILL’s sampling algorithms (§6), generates �lters (§7), and loads

them into the BGP daemons. Observe that sampling algorithms

require all data (all updates from all VPs), which con�icts with the

overshoot-and-discard principles of GILL. However, steps #1 and

#2 of component #1 can execute pre�x by pre�x and step #3 only

needs the output of the previous two steps. Additionally, component

#2 can run on short windows of updates. Thus, the orchestrator

copes with high data volume by temporarily retaining all data for a

pre�x or all data during a short time window (using a mirroring

scheme invisible to users, see Fig. 9), executing components #1 and

#2, generating �lters, and then dropping this data. Finding redun-

dant updates (component #1) takes 22 hours while �nding anchor

VPs (component #2) takes 35 hours with the RIS and RV data. These

execution times are compatible with the frequency at which GILL

updates its �lters (§7).

9 GILL IS UP AND RUNNING

GILL runs at https://bgproutes.io and currently collects BGP up-

dates from a few routers. The installation of new VPs is automated:

operators can connect their BGP routers to GILL by submitting a

form on the website. GILL automatically con�gures new peering

sessions based on the information provided in the form and new

peers are visible on the website within a few minutes. GILL min-

imizes the risk of fake or miscon�gured peering sessions using a

two-step authenti�cation scheme: (i) a new participant must send

an email to GILL with the AS number provided in the form (ii) once

received, GILL cross-checks that the email address of the sender

owns that AS according to PeeringDB [43]. In addition to its own

peers, GILL also takes as input streams of BGP updates from all

RIS VPs using the WebSocket API of RIS Live [48] and all RV VPs

using a custom proxy that gathers and gives to GILL the RV data in

near real-time. Overall, GILL currently processes and stores data

for ≈2500 VPs. GILL stores the collected BGP updates in a public

database using the MRT format [8] with Bzip2 �le compression. We

publish two supporting documents:

• The computed �lters from which users can infer which BGP up-

dates are discarded by GILL and possible missing in the database;

• The list of anchor VPs found by GILL and from which all the

updates are processes and stored.

These documents help users �nd which bits of data they should

process from RIS when they have limited resources, whichmitigates

the risk of common but naive sampling approaches (§16).

10 BENCHMARKING GILL’S SAMPLING

We show that GILL’s sampling improves the trade-o� between data

volume and information inferred compared to current BGP data

sampling schemes in �ve use cases.

Use cases. We carefully picked the �ve use cases such that each

BGP attribute is required for at least one of them. For instance, the

time is required to detect transient events (use case I ); the pre�x

is required to detect Multiple Origin ASes (MOAS) pre�xes (use

case II ); the AS path is required to map the Internet topology (use

case III ); and the community values are required to detect action

communities (use case IV ) and unchanged-path updates (use case

V ). These use cases allow us to show that GILL’s sampling does not

over�t on some particular use cases or BGP attributes. For each use

case, we process updates collected by all RIS and RV VPs during 30

one-hour periods (randomly selected in Sept. 2023), and benchmark

GILL’s sampling on a set of events found. We brie�y describe below

each use case along with our experimental settings.

I Transient paths detection. Transient paths are BGP routes visible

for less than �ve minutes, a typical BGP convergence delay [30],

and which can be attributed to e.g., path exploration [39]. We focus

on all transient path events detected during the 30 hours, a total of

859K events.

II MOAS pre�xes detection.MOAS pre�xes are announced by multi-

ple distinct ASes [56], due to legitimate [66] or malicious [15, 51, 59]

actions. We use the methodology of [46] to eliminate false positives.

We focus on all 1587 MOAS observed during the 30 hours.

III AS topology mapping. This is useful for e.g., inferring BGP poli-

cies [31] or AS paths [33]. For each VP, we process the �rst RIB

dump of Sept. 2023 as well as the updates collected during the 30

one-hour periods. We focus on all 687K distinct AS links observed.

IV Action communities detection. Action communities are associ-

ated with tra�c engineering actions and are the most challenging

to observe [60]. We consider all 8683 action communities provided

in [60] and observed during the 30 hours.

V Unchanged-path updates detection.Unchanged-path BGP updates

are announcements that only signal a change in community val-

ues but not in AS path [29]. We consider all 263K unchanged-path

updates observed during the 30 hours.

Baselines. We benchmarked GILL’s sampling against several base-

lines from the following four categories.

GILL-simpli�ed: We developed two simple versions of GILL, one

named GILL-upd that samples at the update granularity (using

Component #1 in §6) and another named GILL-vp that samples at

the VP granularity (using Component #2 in §6).

Naive baselines: We develop four naive sampling schemes some of

which are used in practice (see §16): (i) Rnd.-VP selects updates

exported by a random set of VPs (ii) AS-Dist. selects a �rst VP ran-

domly and the next ones to maximize the AS-level distance between

selected VPs. It collects all updates from them; (iii) Unbiased takes

all VPs, iteratively removes the one that most increases the bias

(according to the de�nition in [57]), and collects all updates from

the remaining VPs, and (iv) Rnd.-Upd selects updates randomly

regardless of which VP they come from.

Definition-based speci�cs: We compare GILL against three speci�c

sampling schemes optimized for minimizing redundancy based on

redundancy de�nitions 1, 2, and 3 in §4.

https://bgproutes.io
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Sampling Scheme GILL
GILL-simpli�ed Naive De�nition-based speci�cs Use-case-based speci�cs

GILL-upd GILL-vp Rnd. Upd. Rnd. VP AS-Dist. Unbiased Def. 1 Def. 2 Def. 3 I II III IV V

U
se

ca
se
s

Trans. path detection (I ) 96% 65% 75% 83% 75% 95% 89% 76% 98% 82% 100% 83% 79% 82% 83%

MOAS detection (II ) 95% 95% 45% 33% 35% 59% 46% 47% 48% 40% 36% 100% 32% 33% 32%

Topo mapping (III ) 90% 93% 61% 72% 41% 67% 38% 43% 49% 33% 72% 72% 100% 72% 64%

Action Coms. detection (IV ) 91% 95% 49% 79% 48% 41% 42% 46% 45% 44% 78% 77% 85% 100% 73%

Unchanged-path Upd. detection (V ) 87% 60% 80% 76% 74% 43% 61% 63% 63% 90% 76% 76% 71% 76% 100%

Table 2: GILL’s sampling outperforms all naive baselines, for all use cases. Unlike the Use-case-based speci�cs baselines, GILL

avoids over�tting. The color means that GILL performs better ( ), worse ( ), or similarly ( ) than the baseline.

Use-case-based speci�cs: We compare GILL against �ve speci�c sam-

pling schemes, one optimized for each of the �ve use cases described

above. These speci�c sampling schemes optimize the trade-o� be-

tween the volume of the data and its capacity to achieve a particular

objective. For instance, the speci�c sampling scheme optimized to

map the AS topology (use case III ) iteratively selects the VP that

best improves the trade-o� between the number of discovered AS

links and the volume of processed data.

Benchmark results. We compute for GILL and each baseline the

proportion of events that they detect or links that they observe

and report the results in Table 2. For instance, GILL detects 95% of

MOAS events means that the data GILL samples enables to detect

95% of the 1587 MOAS events used in the benchmark. The cell of a

baseline is green when GILL outperforms the baseline, red if the

baseline is better, and yellow if the two perform similarly (±5%).

We ensure that the baselines process the same number of updates

as GILL, i.e., 6.7% of RIS and RV updates (see §6).

Takeaway #1: Unlike its simpli�ed versions, GILL performs well

for every use case. GILL-upd performs poorly for use cases I and

V whereas GILL-vp always performs worse than GILL. GILL-vp

outperforms GILL-upd for use cases I and V likely because the

higher link visibility that GILL-upd enables compared to GILL-vp

is not helpful for these use cases. GILL-upd outperforms GILL-vp

for other use cases, as it collects more diverse BGP attributes. This

complementarity between GILL-vp and GILL-upd demonstrates

that Ingredient #2 in GILL’s principles (§5) is sound.

Takeaway #2: GILL outperforms each naive baseline for every use

case, and sometimes signi�cantly, e.g., GILL detects +62%, +60%,

+36%, and +49% MOAS hijacks (use case II ) compared to Rnd.-Upd.,

Rnd.-VPs, Dist.-based and Unbiased, respectively.

Takeaway #3: The de�nition-based speci�cs perform poorly formany

use cases, e.g., GILL detects +45%, +46%, and +47% action commu-

nities (use case V ) compared to the speci�c optimized for Def. 1, 2,

and 3, respectively. This demonstrates that GILL’s �lter generation

is sound (§7).

Takeaway #4: GILL generalizes whereas use-case-based speci�c sam-

pling schemes over�t. In fact, a speci�c baseline optimized for a

use case outperforms GILL for that use case (thus the diagonal is

yellow/red). However, GILL always outperforms a speci�c baseline

for the use cases this speci�c baseline does not optimize. These

results demonstrate that our algorithms in §6 avoid over�tting.

11 LONG-TERM IMPACT

The long-term impact of GILL will only be visible when it will peer

with thousands of BGP routers. Yet, we can evaluate the long-term

impact now using simulations with C-BGP [47].

Used AS topologies and se�ings. We generate a pruned known

AS topology and an arti�cial topology using the methodology in §3

except that they now all have 1k ASes to limit the computational

resources needed.

Use cases. We use the three use cases in §3 but focus on p2p links

for both topology mapping and failure localization as they are the

more challenging to capture, and on Type-1 forged-origin hijacks

for the hijack detection use case as they are the most common [25].

Baselines. We compare GILL’s sampling against two baselines.

Random VPs:We iteratively select a VP among the deployed VPs and

collect the updates that it exports until the total number of collected

updates has reached the number of updates retained by GILL. We

use this baseline as it is commonly used in practice according to

our survey (§16).

Best case: Akin to our simulations in §3, we take all updates from

all deployed VPs, which is a best-case scenario. Inevitably though,

best case processes more updates than GILL.

Simulations se�ings. We tested di�erent coverage (i.e., number

of ASes that deploy a VP) ranging from 2% (the rounded-up coverage

of RIS and RV) to 100% (all ASes host a VP). Observe that GILL’s

sampling algorithms (§6) are data-driven and thus need past BGP

updates as input.We thus generate 500 random link failures (distinct

from the failures used for the failure localization use case) and feed

GILL the induced BGP updates collected by every deployed VP.

Simulation results. Unlike in §10 where we focus on a set of

events observed in the RIS and RV data, we now have the ground

truth. We thus compute, for each sampling scheme, the proportion

of events that they detect among all the events that we triggered

or links that they observe among all the links that exist (Table 3).

Note that Table 3 shows results with the arti�cial topology, results

with the pruned known AS topology are similar.

Takeaway #1: GILL responds to the increasing coverage by discard-

ing more data. GILL retains 18% of the updates when coverage is

2%, and 7.9%, 5.4%, 4.7%, and 4.4%, when coverage is 10%, 20%, 50%,

and 100%, respectively. Similarly, GILL �nds that 17% of the VPs are

anchors when coverage is 2%, and 3.3%, 1.3%, 0.9%, and 0.4% when

coverage is 10%, 20%, 50%, and 100%, respectively. This behavior is

expected as the higher the coverage the higher the proportion of

redundant updates.
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Coverage 2% 10% 25% 50% 100%

Data Collection Scheme GILL Rnd. VP Best Case GILL Rnd. VP Best Case GILL Rnd. VP Best Case GILL Rnd. VP Best Case GILL Rnd. VP Best Case

Updates retained / Anchor VPs 18.0% / 17.0% 100%/100% 7.9% / 3.3% 100%/100% 5.4% / 1.3% 100%/100% 4.7% / 0.9% 100%/100% 4.4% / 0.4% 100%/100%

U
se

ca
se
s Topology Mapping 14% 4% 20% 33% 7% 50% 42% 7% 69% 61% 16% 85% 78% 25% 100%

Failure Localisation 29% 11% 37% 61% 14% 81% 60% 25% 80% 80% 18% 92% 94% 40% 100%

Hijack detection 58% 53% 73% 73% 54% 87% 77% 59% 92% 82% 74% 96% 85% 76% 100%

Table 3: Performance of GILL, Rnd.-VPs and best-case on a simulated mini Internet where the proportion of ASes deploying a

VP ranges from 1% to 100%. GILL leverages high coverage but the two other baselines do not.

Takeaway #2: GILL’s overshoot-and-discard data collection scheme

is e�cient. While best-case outperforms GILL, it also collects many

more updates. With 50% coverage, GILL localizes 80% of p2p links

against 92% with best-case. However, GILL collects ≈21× fewer up-

dates than best-case. When coverage is high (e.g., 50%), the number

of updates processed with GILL is comparable to best-case with a

2% coverage. Assuming this observation holds in the real Internet,

GILL would collect a similar number of updates as RIS and RV to-

day while peering with 50% of the ≈75k ASes, which would triple

the number of p2p links mapped, double the number of localized

failures, and reduce by 33% the proportion of undetected hijacks.

Takeaway #3: GILL outperforms random VPs for all use cases. Even

with 100% coverage, only 25% of p2p links are detected when pro-

cessing the same number of updates as GILL. The forged-origin

hijack use case is the more challenging for GILL, as all pre�xes

owned by an AS are subject to identical updates in our simulations

(thus GILL discards many of these updates) but only one pre�x is

hijacked. Yet, GILL always outperforms random VPs for this use

case, e.g., GILL detects +18% of hijacks with a 25% coverage.

12 IMMEDIATE BENEFITS

We show that running GILL’s sampling algorithms on RIS and RV

data improves coverage and accuracy of three studies/tools. Unlike

in §11, the ground truth is now unknown.

GILL helps to infer +16% more AS relationships. We replicate

the methodology proposed in [31] that uses BGP data from RIS

and RV to infer AS relationships and build the widely-used CAIDA

AS-relationship dataset [19]. We compute the number of inferred

AS relationships for every month in 2023 when using the 648 VPs

that CAIDA uses to build its dataset (in Jan. 2023) and when using

all the RIS and RV data but sampled using GILL’s algorithms. We

ensure that GILL retains the same number of BGP updates as the

data set CAIDA collected from the 648 VPs. Thus, we can attribute

any performance improvement to GILL. We �nd that GILL collects

updates that enable consistent (from Jan. 2023 to Dec. 2023) infer-

ence of ≈89k additional AS relationships (≈+17%) while missing

only ≈8k AS relationships (≈1.5%) present in the original dataset.

We also replicated the AS relationship validation algorithm used

in [31] (which relies on IRR and RIR data) and found that the true

positive rate (the metric used in [31]) remains identical (97%). We

conclude that GILL enables inference of ≈+16% more AS relation-

ships compared to the original dataset provided by CAIDA, while

processing the same number of BGP updates and without losing

accuracy.

GILL reduces flawed inferences in the ASRank dataset. We

replicate themethodology used by ASRank [11], which uses 648 VPs

to compute the AS Customer Cone Sizes (CCS).We �nd that the CCS

changes for 1067 ASes when using the same number of BGP updates

as in [11] but sampled using GILL. We manually investigated a few

cases of substantial changes and found that inferences made using

GILL are more accurate. For instance, AS132337 has an incorrect

(con�rmed by AS132337 itself) CCS of 1 in the original dataset and

a correct CSS of 18k when using GILL. Similarly, AS24745 is the

route server of Balcan-IX and has an incorrect CSS of 16 in the

original ASrank dataset, which is �xed when using GILL (CSS is

one). We observe that GILL enables more accurate inferences of

CCSs because it collects more diverse AS paths.

GILL improves forged-origin hijack inferences. We replicate

the algorithm of DFOH [25] that uses routes collected by 287 RIS

and RV VPs to infer forged-origin hijacks in September 2023. We

implement two versions of DFOH, one called DFOH��!! which

uses BGP routes collected by GILL, and another one called DFOH'

that uses routes collected from a random set of VPs. In both ver-

sions, we ensure that the number of routes collected is identical to

the one used in [25]. As DFOH relies on probabilistic inference, we

measure the performance of DFOH��!! and DFOH' in terms of

True Positive Rate (TPR) and False Positive Rate (FPR). We obtain

an approximation of ground truth (needed to compute the TPR and

FPR) by implementing a third version of DFOH, called DFOH�!!

that uses all the RIS and RV data. Note that DFOH�!! is an approx-

imation of ground truth as incorrect inferences are still possible

even if all the data is used because of the low RIS and RV coverage.

DFOH��!! uncovers 1708 suspicious cases against only 1300 for

DFOH' . DFOH��!! outperforms DFOH' for both the TPR and the

FPR: It has a TPR of 94% (against 71.5% for DFOH' ) and a FPR of

14.4% (against 60.1% for DFOH' )—a ≈4× better precision.

13 RELATED WORK

Existing BGP routes collection platforms. Public BGP route col-

lection systems include RIS (≈1500 VPs) [49], RV (≈1000 VPs) [61],

PCH (≈700 VPs) [42], BGPWatch (15 VPs) [7] and Isolario (not main-

tained anymore) [27]. Private collection systems include bgp.tools

(≈1000 VPs) [17], PacketVis (≈2000 VPs) [41], Radar by QRator

(≈800 VPs), Kentik’s and ThousandsEyes’s BGP route monitoring

platforms (con�dential number of VPs). Observe that their coverage

(when known) is always tiny (<2%). However, they could all bene�t

from GILL’s algorithms to increase their coverage with limited cost.

VPs deployment schemes. Current VPs deployment schemes

suggest deploying a few but strategically positioned VPs [53]. For
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instance, Gregori et al. proposed amethodology that �nds a relevant

placement for a new VP [24], and Cittadini et al. demonstrated the

marginal utility of adding new VPs at the core of the Internet [16].

The peering strategy of RIS is to maximize coverage on the core of

Internet (e.g., by peering with Tier1 ASes) and improve coverage

diversity across countries [2]. GILL’s approach is radically di�erent:

deploying many VPs but discarding redundant routes.

BGP data sampling schemes. Prior works suggest sampling BGP

data at the VP granularity. For instance, Zhang et al. and Oliviera

et al. show that carefully selecting VPs increases the utility of the

data [38, 65]. But their technique is tailored for topology mapping

whereas GILL’s algorithms are not speci�c to a particular objective.

14 FUTURE DIRECTIONS

If GILL gains traction, we expect it to trigger new interesting re-

search problems and future directions.

Incentivizing network operators to peer with GILL. Our vision

for GILL includes an order of magnitude increase in the number

of peers, which motivates the question: how do we inspire such

an expansion in participation? We have already taken two steps

to improve the cost-bene�t calculus of peering with GILL: a fully

automated and immediate peering session activation via a web form

(§9); and a bootstrap of GILL with the 2500 peering sessions from

RIS and RV to ensure a head start in visibility (§9).

Two other strategies could further incentivize participation.

• Custom services that improve visibility. In return for peering,

GILL could let the network operator con�gure forwarding rules

such that GILL forwards some updates to the operator’s network

prior to discarding them. Forwarding rules would typically enable

operators to have high visibility of their pre�xes. If GILL had

100% coverage of VPs, operators could make hijack detection

systems such as ARTEMIS [56] bulletproof for their pre�xes.

• Collective action. Recent community-driven routing security

initiatives such as MANRS [32] or VIPzone [18] could encourage

participants to contribute BGP data to public BGP data collection

platforms. The FCC’s recent notice of proposed regulation [63] to

require disclosure of BGP security strategies could lend further

motivation to such strategies.

Preventing fake peering sessions and data. WhileGILL includes

a basic authenti�cation scheme when installing a new peering

session, nothing prevents an attacker with an AS from announcing

fake updates once it peers with GILL. Remote peering sessions also

enable on-path attackers to modify the content of the BGPmessages

to replace route updates with fake ones.

Fake BGP updates and on-path attackers are also possible with

current collection platforms, which as far as we know, do not em-

ploy any mechanism that consistently veri�es the validity of the

collected routes. Thus, GILL opens up new research problems in

verifying the correctness of the collected BGP updates. Encrypted

BGP peering sessions using e.g., BGP over QUIC seems a promising

starting point [13, 64].

Generalizing to other types of Internet routing data. The prin-

ciples used in GILL’s algorithms and implementation extend to

other types of BGP monitoring systems (e.g., BMP) and potentially

other types of Internet data, e.g., active measurement platforms

(e.g., RIPE Atlas [50]). Adapting our algorithms for these use cases

is a promising direction.

Ethics. See §16 about the ethics of our survey. Otherwise, this

work does not raise any ethical issues.
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15 APPENDICES

We provide appendices to support reproducibility and trans-

parency of artifacts of this work. The appendices address ques-

tions of interest to a small minority of reviewers such as addi-

tional implementation detail on the algorithms in §6, including

formalization, illustrative examples, and empirical grounding

for selection of default threshold parameters. We will publish

this material on GILL’s website. We expect reviewers to only

use this material for reference purposes if at all. Appendices are

supporting material that has not been peer-reviewed.

16 SURVEY

Detailed methdology. We selected eleven papers and classi�ed

them based on how authors collected the BGP data (categories �1
and �2, in Table 4). We then emailed the authors and asked them

about their experience with using BGP routes from RIS and RV. We

did not receive answers for three papers. Observe that we do not

show parts of a few answers that would make de-anonymization

possible. However, missing parts never change the message con-

veyed in the answers.

Detailed answers. Table 4 lists the questions we asked the partici-

pants of our survey along with their detailed answers. We color the

answers based on our interpretation of whether the responses are

aligned with GILL’s objectives (green) or not (red). Neutral answers

are colored in blue. The vast majority of the answers indicate that

GILL would be bene�cial for users and improve the quality of their

measurement studies.

Common BGP data sampling schemes. Among the seven re-

spondents who took the data from a subset of the VPs, one picked

geographically distant VPs. While intuitive, this strategy fails to

optimize for some metrics (e.g., AS link coverage §10). Another

respondent unintentionally removed some VPs (leaving an arbitrar-

ily selected set in the study) and two did not remember how they

selected their VPs. All the remaining respondent selected their VPs

arbitrarily. We show in the benchmark (§10) that sampling data

in an unoptimized fashion, i.e., arbitrarily or with simple metrics

leads to poor performance for most of the use cases.

Ethics The participants of the survey freely participated. We

contacted them by email to ask them whether they would agree to

participate. We stated the purpose of the survey and noti�ed them

we might publish the results anonymously. Following is the exact

wording we used when soliciting participants.

"I would like to know whether you would be willing to answer a quick

survey about why you selected these VPs and the impact that you

think this selection made on your measurement study.

Answering this survey will help us to better understand how re-

searchers proceed when selecting BGP vantage points, why they often

do not take them all, and what is the impact of the vantage points se-

lection on the results of the measurement studies. The survey includes

https://content.cooperate.com/post/internet_history/
https://labs.ripe.net/author/kistel/ripe-ncc-measurement-data-retention-principles/
https://labs.ripe.net/author/kistel/ripe-ncc-measurement-data-retention-principles/
https://manrs.org/
http://www.routeviews.org/peers/peering-status.html
http://www.routeviews.org/peers/peering-status.html
https://https://packetvis.com/
https://https://packetvis.com/
https://www.pch.net/
https://www.peeringdb.com/
https://frrouting.org/
https://ris-live.ripe.net/
https://www.ripe.net/data-tools/stats/ris/
https://atlas.ripe.net/
http://www.ripe.net/internet-coordination/news/industry-developments/
http://www.ripe.net/internet-coordination/news/industry-developments/
https://www.ris.ripe.net/peerlist/
https://www.sciencealert.com/over-99-percent-of-large-hadron-collider-particle-collision-data-is-lost
https://www.sciencealert.com/over-99-percent-of-large-hadron-collider-particle-collision-data-is-lost
https://arstechnica.com/security/2017/04/
www.routeviews.org/
https://docs.fcc.gov/public/attachments/DOC-402609A1.pdf
https://docs.fcc.gov/public/attachments/DOC-402609A1.pdf
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Collection strategy Questions asked Collected answers

�1: All routes and
subset of VPs
(seven papers)

Why did you use a subset of the VPs ?

To speed up data processing (x2)
For disk space and time e�ciency (x1)
I thought the rest would be similar (x1)
I did not manage to use them all (x2)

How did you select your VPs ?

I took them randomly (x2)
I do not remember (x2)
It was arbitrary: my script partially failed (x1)
I took geographically distant BGP collectors (x1)
I did not manage to use VPs from one data provider (x1)

Do you think more VPs would improve
the quality of your results?

Yes (x4)
Results would be similar, but it can help to �nd corner cases (x1)
Yes, but not signi�cantly (x1)
I am not sure (x1)

Would you have used more VPs
if you could?

Yes (x4)
Yes, I’d love to (x1)
De�nitely (x1)
I am not sure, but I don’t think so (x1)

�2: Limited duration
of experiment
(�ve papers)

Was the processing time a factor
that you considered when you decided
on the duration of your measurement study?

Yes (x3)

Do you think extending the duration
of your measurement study would
improve the quality of your results?

Yes (x2)
Yes, especially for rare events (x1)
Potentially (x1)
Yes, but not signi�cantly (x1)

Would have extended the duration
of your measurement study
if you had more resources?

Yes (x2)
Yes, but it depends on the time remaining before the deadline (x1)
I think so, but also if I had more time before the deadline (x1)

All eight papers

Do you �nd the data from RIS and
RouteViews expensive to process
in terms of computational resources?

Yes (x1)
Yes, CPU and storage (x2)
Yes, the storage cost and the download cost are very large (x1)
CPU is the main issue (x1)
RIS data takes a lot of time to download, especially when we need data for multiple days (x1)
Not the worst, but we de�nitely need a resourceful server if we want to catch some deadline (x1)
We did that in a server so that was not a huge issue (x1)
No (x1)

Is there any additional challenge
that you encountered when processing
the BGP data from RIS and RouteViews?

Our team used Spark clusters and Python but it was too slow (x1)
We had to download the data from all VPs as there is no optimal solution for selecting them,
the storage overhead and time overhead were extremely high (x1)
It’ll be helpful to make processing faster and less resource-consuming (x1)
Too many duplicate announcements make processing harder (x1)
Variable sizes of update �les exacerbate scheduling parallelization (x1)
RIS took a lot longer than RouteViews (x1)
We had issues when collecting updates in real-time (x1)
We had to deal with bugs in BGPdump (x1)
Broken data feeds and data cleanup is also an issue that we need to take care of (x1)
Our study was done pre-BGPStream, which would have helped quite a bit already (x1)

Table 4: An exhaustive list of the questions asked to the participants of the survey along with their detailed answers. We color

an answer in (bold) green if it (strongly) motivates the usage of a tool such as GILL. Blue answers are neutral, i.e., they do not

motivate GILL but also do not disincentive it. Finally, (bold) red answers (strongly) disincentive the usage of a tool such as GILL.

a few questions that I will send you by email if you agree to answer

them. It should take less than 5 minutes to answer it.

We might publish the results of our survey. If we do that, we will either

do it in a manner that would not allow identi�cation of your personal

identity, or we will ask your permission."

17 REPRODUCIBILITY DETAILS:
FINDING REDUNDANT UPDATES

We detail the algorithm used byGILL to �nd redundant BGP updates

to allow reproducibility. We formalize its key functions, showcase

its execution on an example, and explain how we con�gure its

parameters. We refer the reader to §6 (component #1) for a more

succinct description that focuses on the fundamental intuition and

principles.

17.1 Building groups of correlated updates

Pointer: This section details Step 1 of component #1 in §6.

Quick reminder: GILL builds correlation groups i.e., per-pre�x

sets of updates that are correlated in time. A time-correlated set of

updates means that when one element of this set is observed, the

other are likely to be quickly observed after. Within a correlation

group,GILL identi�es an update with its sending VP, AS path, and

community values. Recall that all update attributes in a correlation

group share the same pre�x.

Example. Fig. 10 uses the same AS topology as in Fig. 5 but with

four distinct events separated in time. To simplify, we only focus

on pre�x p1 , and omit community values. This does not change

how GILL works in practice.

Upon event #1 (time T_1): The failure on 2 4 triggers two up-

dates, one from VP1 and one from VP2 , each with an AS path that
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circumvents the failure. Since these two updates for the same pre�x

are correlated in time, GILL groups their attributes into correlation

group �1.

Upon event #2 (time T_2): 2 4 is restored and VP1 (resp. VP2 )

receives updates that announce the primary path from 2 (resp. 6 )

toward p1 . These two updates are di�erent from the ones collected

after the failure. Since these two updates have the same pre�x and

are correlated in time, GILL groups their attributes into correlation

group �2.

Upon event #3 (time T_3): Both 2 4 and 2 6 fail. VP1 re-

ceives an update for p1 with AS path 2 1 4 . VP2 receives an

update for p1 with AS path 6 3 1 4 , which circumvents

both failures. As these updates were not previously observed, GILL

builds correlation group �3 and adds their attributes.

Upon event #4 (time T_4): Both 2 4 and 2 6 are restored.

VP1 (resp. VP2 ) receives an update that announces the primary

path from 2 (resp. 6 ) to p1 . These two updates have the same

attributes as the updates collected upon event #2 and are correlated

in time. GILL does not build a correlation group but increases by

one the weight of �2.

Se�ings. GILL has the following two parameters:

Correlation time window: Maximal time between two updates such

as GILL considers them as correlated in time. Default is 100s to

accommodate typical convergence delays [30].

Correlation groups construction time: Time during which GILL pro-

cesses all updates for a given pre�x and builds its correlation groups.

The construction time must be long enough to ensure that corre-

lation groups are representative of the actual correlation between

updates received by VPs. We tested values for this parameter from

one to ten days, with ten di�erent update periods for each value.

We found that after two days the ranking (in terms of weights)

of correlation groups had a 94% probability of being the same as

if we used another training set of the same size. This number is

95.8% when taking ten days, and 81% when taking one day. We

believe that two days is a reasonable tradeo� between stability and

computational expenses.

17.2 Finding redundant updates per pre�x

Pointer: This section details Step 2 of component #1 in §6.

Quick reminder. GILL �nds redundant updates using the con-

structed correlation groups and an update reconstitution algo-

rithm that relies on a new metric called the reconstitution power.

Formal de�nition of the reconstitution power. We denote

�>AA (?,D) the list of correlation groups for pre�x ? and that in-

cludes the attributes of update D. We denote<0GF486ℎC (G, C) the

function that takes as input the set G of correlation groups, returns

the update attributes included in the correlation group with the

highest weight, and builds the corresponding updates by setting the

timestamps to C and the pre�xes to ? . If multiple correlation groups

have the same highest weight,<0GF486ℎC (G, C) takes one of them

randomly. We denote U(?,D, C) the set of updates reconstituted

from update D with pre�x ? received at time C :

U(?,D, C) =<0GF486ℎC (�>AA (?,D), C)
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Figure 10: An example of howGILL builds correlation groups

for pre�x p1.

Consider now a set of updates V and a subset of it U , and assume that

D (C) is the timestamp of an updateD. Consider also that two updates

are identical if all their attributes are identical (VP, pre�x, AS path,

communities) and the di�erence between their two timestamps is

lower than 100s. The reconstitution power (denoted '% ) indicates

how well we can reconstruct V from U and is de�ned as follows:

'% (V, U) =

�����

(
⋃

D∈U

U(?,D,D (C))

)
⋂

V

�����
/|V |

Observe that
⋃
D∈U U(?,D,D (C)), i.e., the set of updates recon-

stituted from all updates in U can include updates that are not

in V . However, these incorrectly reconstituted updates (or "false

positives") are ignored (operator
⋂
) in the reconstitution power

de�nition, which only focuses on updates in V that are correctly

reconstituted (the "true positive rate"). Incorrectly reconstituted

updates occur when two updates D1 and D2 with the same pre�x,

VP, AS path, and community values but received at time C1 and C2
(with |C1 − C2 | >100s) appear correlated with distinct sets of updates,

which results in D1 and D2 being in two di�erent correlation groups.

Thus, reconstituting updates from D1 might result in reconstituting

updates that appear withD2 but adding to them timestamp C1, which

leads to incorrectly reconstituted updates.

Explanation of the reconstitution algorithm (with example).

After building the correlation groups (§17.1), GILL greedily builds

the set of least redundant updates U , i.e., in each iteration GILL

adds to U the update in V \ U that best improves the reconstitution

power. GILL adds to U either all updates received by a VP, or none

because GILL generates �lters that match on the VP and the pre�x

and cannot discriminate updates based on AS path or community

values (see §7).
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Figure 11: Reconstitution power as a function of the propor-

tion of discarded updates (|U |/|V |).

In the scenario depicted in Fig. 10, the set of initial updates V

contains the eight updates induced by the four events (the i-th

update is denoted*8 ):
*1: Time T_1; VP: VP1 ; Pre�x: p1 ; AS path: 2 1 4

*2: Time T_1; VP: VP2 ; Pre�x: p1 ; AS path: 6 2 1 4

*3: Time T_2; VP: VP1 ; Pre�x: p1 ; AS path: 2 4

*4: Time T_2; VP: VP2 ; Pre�x: p1 ; AS path: 6 2 4

*5: Time T_3; VP: VP1 ; Pre�x: p1 ; AS path: 2 1 4

*6: Time T_3; VP: VP2 ; Pre�x: p1 ; AS path: 6 3 1 4

*7: Time T_4; VP: VP1 ; Pre�x: p1 ; AS path: 2 4

*8: Time T_4; VP: VP2 ; Pre�x: p1 ; AS path: 6 2 4

After one iteration, the reconstitution algorithm returns U =

(*2,*4,*6,*8). The four updates all come from VP2 and enable

the reconstitution of V entirely. In fact:

*2 (in �1) leads to the reconstitution of*1 (also in �1)

*4 (in �2) leads to the reconstitution of*3 (also in �2)

*6 (in �3) leads to the reconstitution of*5 (also in �3)

*8 (in �2) leads to the reconstitution of*7 (also in �2)

Observe that V cannot be entirely reconstituted if U contains the

four updates collected by VP1 . In fact,*1 and*5 have identical at-

tribute values but appear correlated to di�erent updates throughout

time (*1 is correlated to*2 and*5 is correlated to*6). Thus, either

*2 or*6 is not reconstituted. Besides, one update is inevitably incor-

rectly reconstituted. Either*1 leads to reconstituting the following

update:
Time T_1; VP: VP1 ; Pre�x: p1 ; AS path: 6 3 1 4

which is not in V , or*5 leads to reconstituting the following update

(which is also not it V):
Time T_3; VP: VP1 ; Pre�x: p1 ; AS path: 6 2 1 4

In practice, we observe a strong correlation in time across up-

dates, i.e., if a set of updates appear together at time C , then the

appearance of one update in this set in the future is likely to be

followed by all the other updates in that set. On the RIS and RV data,

we measure that among the updates that could be reconstituted

but that are not in V ("negative" cases), only 4.6% are (incorrectly)

reconstituted ("false positive rate").

Se�ing. The key parameter of GILL is when to stop iterating

and adding new elements in U . On one hand, if |U |/|V | is close to

one, the reconstitution power is close to one (the optimum), but at

the expense of retaining many updates, leading to GILL building

�lters that retain too many updates. On the other hand, if |U |/|V |

is close to zero, the reconstitution power is low, resulting in many

nonredundant updates being discarded by the generated �lters.

This trade-o� is visible in Fig. 11, which plots the reconstitution

factor for di�erent values of |U |/|V |. Logically, the �rst updates

added to U improve the reconstitution factor signi�cantly. Once the

reconstitution factor reaches 0.94, adding new updates to U has a

more limited impact on the reconstitution factor. GILL thus stops

iterating when the reconstitution factor reaches 0.94.

17.3 Finding redundant updates
across pre�xes

Pointer: This section details Step 3 of component #1 in §6.

Quick reminder. BGP routes to di�erent pre�xes can be sub-

ject to similar updates. For instance, a VP likely observes the

same route updates toward two pre�xes announced by the same

AS, which is the case for pre�xes p1 and p2 in Fig. 5. Thus,

the compound (for all pre�xes) set of nonredundant updates

returned by our algorithm (executed per-pre�x) in §17.2 may

include redundant updates.

Explanation of the algorithm used to �nd redundant updates

across pre�xes. GILL �nds redundant updates across pre�xes

using the following algorithm: (i) it splits the sets of per-pre�x

nonredundant updates returned by our algorithm in §17.2 into

distinct subsets based on the sending VP (ii) among all the found

subsets, GILL identi�es the ones that contain updates with identical

attributes (except for the pre�xes, and with a 100s slack for the

timestamps) and (iii) for every group of identical subsets, GILL

classi�es the updates in one subset as nonredundant and the updates

in the other subsets as redundant. In Fig. 5, our algorithm in §17.2

�nds the same set of nonredundant updates for both p1 and p2 .

Thus, GILL classi�es the set of nonredundant updates for p1 as

redundant whereas the set of nonredundant updates for p2 remains

classi�ed as nonredundant.

18 REPRODUCIBILITY DETAIL:
SELECTING ANCHOR VPS

We explain (with formalization) the algorithm used by GILL to

�nd anchor VPs and provide the methodology used to select its

parameters. We refer the reader to §6 (component #2) for a more

succinct description that focuses on the fundamental intuition and

principles.

We consider the set of VPs + that includes all VPs from RIS and

RV. We compute the RIB of VP E at time C using its last RIB dump

before C and subsequent updates until C . We use this RIB to construct

and maintain the directed weighted graph �E (C) = (#E (C), �E (C))

from the AS paths of the best routes observed by E at time C , with

#E (C) the set of nodes and �E (C) ∈ #E (C) ∗#E (C) the set of AS links.

The edges are directed because two identical paths in opposite

directions should not appear as redundant. Each edge in �E (C) has a

weight in Z+ which is the number of routes in the RIB that includes

this edge in their AS path.
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ID Name # of ASes Avg.degree Description

1 Stub 63310 3 ASes without customer

2 Transit-1 10845 27
Transit ASes with a customer

cone size lower than the average

3 Transit-2 704 267 Transit ASes ∉ Transit-1

4 HyperGiant 15 1078 Top 15 as de�ned in [10]

5 Tier1 19 1817 Tier1 in the CAIDA dataset [19]

Table 5: GILL balances selected events across AS types.

18.1 Select BGP events to assess redundancy

Pointer: This section details Step 1 of component #2 in §6.

Quick reminder: GILL uses non-global BGP events to evaluate

pairwise redundancy between VPs. GILL strati�es its sample of

events across space and time to avoid bias.

GILL uses local and partially visible BGP events. To assess

redundancy, GILL focuses on BGP events that trigger topological

changes: new-link events (i.e., a new link that appears in the view

of at least one VP), outages (i.e., edges that disappear from the view

of at least one VP), and origin changes (either legitimate or not). An

event is a candidate if it has been seen by at least one VP and less

than 50% of them. As mentioned in §6, GILL excludes global events,

as it aims at �nding unique pieces of data in each individual VP.

GILL avoids biases across time and location. From a candidate

set of events, GILL builds the �nal set of events E by selecting 2250

non-overlapping events (we �nd that using more events does not

change the performance of GILL), among which 750 are new-edge

events, 750 are outages, and 750 are origin changes. GILL infers

the start and end of these events by processing all the data that it

collects using its out-of-band �ltering system (described in §8).

Inspired by previous approaches to mitigate the risk of over-

sampling core or stub (edge) ASes [44, 57], our approach classi�es

ASes into �ve categories (Table 5) and selects an equal number of

events for every pair of AS categories. The AS pair for new-link and

outage events corresponds to the two ASes at both ends of the link.

For origin change, it corresponds to the old and new origins. We

distinguish two classes of transit providers by customer cone size

(Transit-1 and -2) since they have di�erent topological properties.

If an AS belongs to more than one category, we classify it in the

category with the highest ID. ASes classi�ed in a lower row of

Table 5 have a higher degree, and there are more low-degree ASes

than high-degree ASes.

Fig. 12 shows the proportion of selected events for each of the

15 pairs of AS category (the matrices are symmetric) and for 2250

events selected in Sept. 2023 using two schemes: balanced and

random. The random selection (Fig. 12b) selects many more events

involving Transit-2 ASes (69%) than hypergiants (11%), while our

balanced selection scheme mitigates biases by selecting the same

number of events in every category (Fig. 12a). GILL selects 50 new

links, outages, and origin changes in each of the 15 pairs of ASes,

yielding 15 ∗ 3 ∗ 50 = 2250 events (|E | = 2250) used in next step.
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Figure 12: GILL selects events using a balanced selection

scheme that reduces bias. The x- and y-axes are the �ve cate-

gories of ASes (see Table 5).

18.2 Quantifying observation of VPs

Pointer: This section details Step 2 of component #2 in §6.

Quick reminder: GILL evaluates how each VP experiences the

selected events by computing the impact that they induce on

topological features. These features embed information about

time, pre�x, AS path, and communities.

GILL considers the four main BGP a�ributes. GILL computes

the impact of each event on the topological features [9, 22, 54]

of graph �E (C) for all VPs. The combination of these topological

features prevents over�tting as the graphs on which they are com-

puted embed information about the four main BGP attributes (§2).

More concretely, the graphs �E (C) embed information about (i) the

time as the graph is built until a given time, (ii) the AS path as it is

used to build the AS graph, (iii) the pre�xes, used to weight every

edge on the graph, and (iv) the community values, which strongly

correlate with the AS path. We con�rm this correlation by down-

loading the �rst RIBs of Sept. 2023 for all VPs and analyzing the

correlation between the AS path and the set of BGP communities.

We �nd that two identical AS paths share the exact same set of

BGP communities in 93% of the cases. GILL thus does not embed

more information about BGP communities in �E (C) because many

of them encode local tra�c engineering decisions [20] that could

lead to over�tting. We validate this design choice in §10.

GILL uses 15 diverse topological features (Table 6). GILL com-

putes topological features (extracted from literature [9, 22, 54]) that

are either node-based or link-based. GILL computes node-based fea-

tures for the two ASes involved in each event, while GILL computes

link-based for the AS pair. GILL uses six node-based features that

we classify into three categories. The �rst one quanti�es how cen-

tral and connected a node is; the second quanti�es how connected

are the neighboring nodes; and the third quanti�es the topological

patterns that include the node. We classify the three pair-based

features into a single category that measures how close two nodes

are based on their neighboring nodes. Five features rely on edge

weights. We omit other topological features as they are redundant

with the selected ones.
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Type Categorie Name Weighted Index

N
o
d
e
-b
a
se
d

Centrality Metrics
Closeness centrality ✓ 0

Harmonic centrality ✓ 1

Neighborhood Richness
Average neighbor degree ✓ 2

Eccentricity ✓ 3

Topological Pattern
Number of Triangles × 4

Clustering ✓ 5

P
a
ir
-b
a
se
d

Closeness Metrics

Jaccard × 6

Adamic Adar × 7

Preferential attachment × 8

Table 6: Node-based and pair-based features.

GILL computes the impact of each event on the features for

each VP. Consider event 4 ∈ E that involves two ASes 4�(1
and 4�(2, starts at time 4B , and ends at time 44 . E is a VP ∈ + .

Computation of the feature values depends on the feature type.

We denote �= (resp. �? ) the set of node-based (resp. pair-based)

features and show how GILL computes the value of these two types

of features for event 4 and VP E .

Node-based features: Consider feature 58 ∈ �= and 58 (G,�E (C)) its

value for node G on graph�E (C), with 8 the feature index in Table 6.

GILL computes the following 12-dimensional feature vector.

)=>34_10B43 (E, 4) = [50 (4�(1,�E (4B )) − 50 (4�(1,�E (44 )),

50 (4�(2,�E (4B )) − 50 (4�(2,�E (44 )),

. . . , 55 (4�(1,�E (4B )) − 55 (4�(1,�E (44 )),

55 (4�(2,�E (4B )) − 55 (4�(2,�E (44 ))]

Pair-based features: Consider feature 58 ∈ �? and 58 (G1, G2,�E (C))

its value for the node pair (G1, G2) on the graph �E (C), with 8 the

feature index in Table 6.GILL computes the following 3-dimensional

feature vector.

)?08A_10B43 (E, 4) = [56 (4�(1, 4�(2,�E (4B )) − 56 (4�(1, 4�(2,�E (44 )),

. . . , 58 (4�(1, 4�(2,�E (4B )) − 58 (4�(1, 4�(2,�E (44 ))]

The �nal feature vector is ) (E, 4), a 15-dimensional vector that

concatenates (⊕) the node- and pair-based features.

) (E, 4) = )=>34_10B43 (E, 4) ⊕ )?08A_10B43 (E, 4)

18.3 Redundancy scoring

Pointer: This section details Step 3 of component #2 in §6.

Quick reminder: GILL computes the pairwise redundancy

scores between VPs, i.e., it computes the pairwise Euclidean

distance between the feature vectors of each pair of VPs. GILL

then computes the average pairwise Euclidean distance between

each pair of VPs over all events.

Step 1: Normalize feature vectors. GILL normalizes the data

for each event 4 using the feature matrix M(4) that includes the

feature vectors for all VPs (one per row).

M(4) =



) (E0, 4)

. . .

) (E |+ | , 4)


GILL normalizes (operation ▽) the matrixM(4) column-wise using

a standard scaler that transforms every column such that its average

is zero and its standard deviation is one.

Step 2: Compute Euclidean distance between VPs. GILL uses

the normalized matrix ▽(M(4)) to compute the Euclidean distance

between every pair of VPs and for event 4 (operation ⋄). We denote

▽(M(4))G the x-th row in the matrix ▽(M(4)) and ▽(M(4))G,8
its value at index 8 (i.e., the i-th column). We de�ne the Euclidean

distance between the n-th VP E= and the m-th VP E< for event 4 as

follows.

⋄(E=, E<, 4) =

15∑

8=0

(▽(M(4))=,8 − ▽(M(4))<,8 )
2

Step 3: Compute the average distance over all time periods.

The redundancy scoreR(E=, E<) between two VPs E= and E< relates

to the normalized average Euclidean distance between them over

the 2250 events, computed as:

R(E=, E<) = 1 −
∐

((
∑

4∈E

⋄(E=, E<, 4)) ∗
1

|E |
)

The operator
∐

applies a min-max scaler so that scores are between

0 and 1, with 1 meaning the most redundant pair of VPs and 0 the

least redundant pair of VPs. GILL thus computes and returns a

redundancy score for every pair of VPs.

18.4 Generating a set of anchor VPs

Pointer: This section details Step 4 of component #2 in §6.

Quick reminder: GILL selects a set of anchor VPs, considering

redundancy and volume. GILL considers the volume of data gen-

erated by each VP as we observe that some export (sometimes

signi�cantly) more updates than others.

GILL generates the set of anchor VPs O that minimizes the pro-

portion of redundant information collected. GILL initializes the set

O with the most redundant VP, i.e., the one with the lowest sum of

Euclidean distances to all the other VPs. This design choice allows

the redundant part of the BGP data (e.g., c2p links) to be visible by

the �rst selected VP. Thus adding VPs that have unique views is

easier. At every subsequent iteration, GILL builds a candidate set

of VPs K that contains the unselected VPs exhibiting the lowest

maximum redundancy score. The maximum redundancy score %

measures the maximum redundancy between a VP E and the set of

VPs O and is de�ned as follows.

% (O, E) = max(R(E, E8 ),∀E8 ∈ O)

GILL adds to K the W = 10% of the nonselected VPs that exhibit the

lowest maximum redundancy score.

GILL then adds to setO the VP in the candidate setK that collects

the lowest volume of data compared to the other VPs in K . This

allows GILL to select VPs that have a good balance between volume

of collected data, and unique information added. GILL estimates
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the volume of data collected by the VPs by counting the number of

updates that they received over 365 one-hour periods, one randomly

selected each day of the year to align with the yearly update rate of

GILL’s anchor VPs (§6). The W parameter allows tuning redundancy

and volume knobs: a low W prioritizes low redundancy while a

higher W prioritizes low resulting data volume. We found that W =

10% performs well in practical scenarios (we tested a range from 1%

to 50%). GILL stops adding new VPs to O when every nonselected

VP has a pairwise redundancy score equal to one with at least one

VP to O. With the RIS and RV VPs, we observe that the default

value is 178.
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